Lesson Plan, 6-9pm, Monday, 10 December, 12018 HE rm. 211, SDCE, North City Campus
Instructor: Ms. S. D. Jones

In our Learning Toolbox:
Multiple styles of learning, thinking and doing the job.

6pm: Write one or two sentences explaining why you chose your particular essay topic.

6:02 Continue on work from your folder (on Reading/Literature/Science/Social Studies).

7pm: Stand up & Stretch, if you wish...
7:00 to 7:15 Work on your Body paragraph (pro or con)
7:15 to 7:25 Math lecture, also using this same passage.
7:25-7:30 We will do the first question/problem from the math online worksheet together, then you finish the online activities from today’s lecture individually on the classroom computers, on your laptop or, on your smart phone.

7pm: work on your essay, using your outline, Essay Map, and Thesis sentence.

7:15 Mathematics: Adding linear expressions see page 85 of Common Core Achieve Mathematics
Example #4:
2x+6 is a linear expression, because it has one variable and no exponents, but… Why call it linear? Can we graph it (you do not have to do this yet, but I want to show you why we call them linear…)?

So 2x+6 and 3x+5 are both linear expressions.

To add two linear expressions, since the variable has the same index, the terms 2x and 3x are called like terms, and we can add their coefficients, giving us 5x.
Then we can add 6 and 5, since they are both constants, giving us a new but equivalent expression: 5x + 11

Now let’s do some of the online math worksheet problems together:
https://www.khanacademy.org/math/algebra/introduction-to-algebra/alg1-intro-to-variables/e/evaluating_expressions_1
Mathematics work online and/or in books from 7:45 until 8:45.

8:40 **Exit Questions:** Monday, Day 51

1. What does scale tell you about the relationship between two objects?
2. Can you use scale for a photograph? *(hint: see lesson 2.1 in Common Core Achieve Mathematics)*
3. Fill in the table below in your notebook.

8:45 Show Ms. Jones your Exit Ticket in your notebook, then get home safely!

<table>
<thead>
<tr>
<th>#</th>
<th>Quantity</th>
<th>Fractional Exponents</th>
<th>Radical form</th>
<th>multiply</th>
<th>exponent</th>
<th>fraction</th>
<th>decimal</th>
<th>percent</th>
<th>Por Ciento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(64)²/²</td>
<td>√64</td>
<td>4*2</td>
<td>8¹</td>
<td>64/2, 8/1</td>
<td>8.0</td>
<td>800%</td>
<td>800/100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(1/9)²/²</td>
<td>√1/9</td>
<td>33*(1/99)</td>
<td>3⁻¹</td>
<td>1/3</td>
<td>.3333</td>
<td>%</td>
<td>33/100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One Quarter</td>
<td></td>
<td>2*(1/8), ½ * ½</td>
<td>4⁻¹</td>
<td>1/4</td>
<td>.25</td>
<td>25%</td>
<td>25/100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>twelve</td>
<td>(144)¹/²</td>
<td>√144</td>
<td>34, 62</td>
<td>5⁻¹</td>
<td></td>
<td></td>
<td>1200/100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One fifth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>