Lesson Plan. **6-9pm, Wednesday, 28 November, 12018 HE rm. 211, SDCE, North City Campus**
Instructor: Ms. S. D. Jones

In our Learning Toolbox:
Times Tables!!

6pm:
Write one or two sentences explaining what you think might be the difference between the \(\sqrt{27} \times \sqrt{3} \) and \(\sqrt{81} \). (Hint: it is good to have your times table chart out to 27!!)

6:02 Continue on work from your folder (on Reading/Literature/Science/Social Studies).

7pm: Stand up & Stretch, if you wish...
7:00 to 7:07 Reading Comprehension
7:07 to 7:15 Grammar lecture, using the passage below.
7:15 to 7:25 Math lecture, also using this same passage.
7:25-7:30 We do 1st question/problem from each online worksheet together, then you finish the online activities from all lectures individually on the classroom computers.

Mathematics work online and/or in books from 7:45 until 8:45.

7:00-7:15 **Grammar:** Coordinating conjunctions connect two parts of a sentence with equal weight.

For example: She wanted to eat the cake, but she did not.

Let’s do the first question from our grammar activity:

7:15 Mathematics Topic: **Radicals and Roots** (Source: P. 39 Common Core Achieve mathematics)

Who can show me what a radical sign looks like?
What is the square root of 81? What is the square root of 9?
What is 81 “root two” and what is 9 “root two?”

Note that that number “root” is what mathematicians call the Index.
What is the index, or the root number, of Square Root??
Do they have the same index?

Example 6, page 39: Common Core Achieve mathematics
Now, let’s do some of the online math practice activity together: https://www.khanacademy.org/math/algebra/rational-exponents-and-radicals/alg1-simplify-square-roots/e/simplifying_radicals

7:30

1.) Please do the rest of our online grammar worksheet:

and

2.) Please do the remainder of online math worksheet:

8:40 **Exit Questions:** Wednesday, Day 45

1. Is “9 root two” the same as “the square root of 9?”

2. Write the quantities eight and one third in numerical form, fractional exponent form, and in radical form in the table below in your notebook.

<table>
<thead>
<tr>
<th>#</th>
<th>Quantity</th>
<th>Fractional Exponents</th>
<th>Radical form</th>
<th>multiply</th>
<th>exponent</th>
<th>fraction</th>
<th>decimal</th>
<th>percent</th>
<th>Por Ciento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3⁻¹</td>
<td>(1/√3)²</td>
<td>√1/3</td>
<td>33*(1/99)</td>
<td>3⁻¹</td>
<td>1/3</td>
<td>.3333</td>
<td>33%</td>
<td>33/100</td>
</tr>
<tr>
<td>2</td>
<td>One Quarter</td>
<td>2*(1/8), ½ * ½</td>
<td>1/4</td>
<td>.25</td>
<td>25%</td>
<td>25/100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>(36)¹/²</td>
<td>√36</td>
<td>3*2</td>
<td>6/1</td>
<td>1200/100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8:45 Fill in and show Exit Ticket in your notebook, then get home safely!